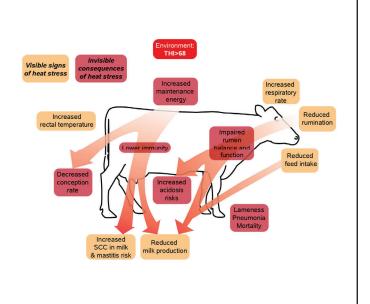
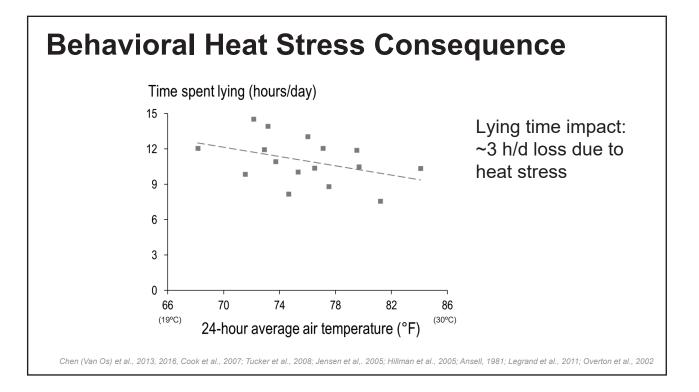
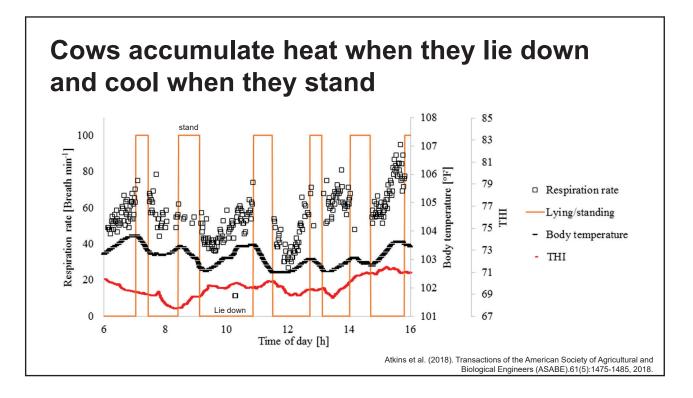


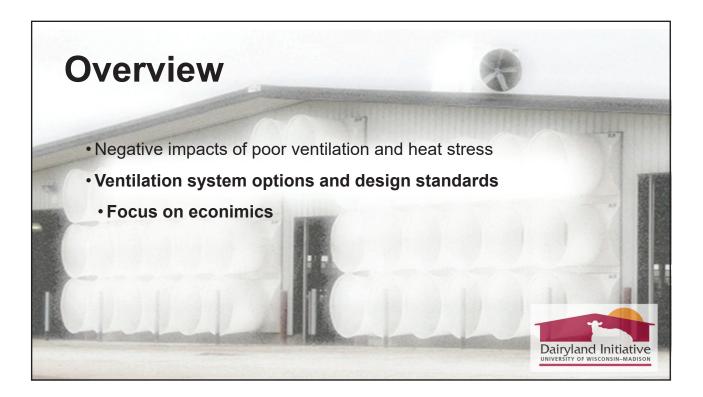
Economics of Natural vs. Mechanically Ventilated Barns

Presented by Courtney Halbach, MBA

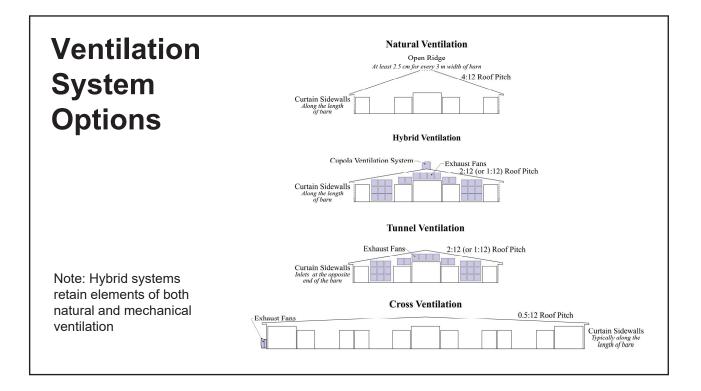

Slides by Nigel Cook, BSc BVSc Cert CHP DBR

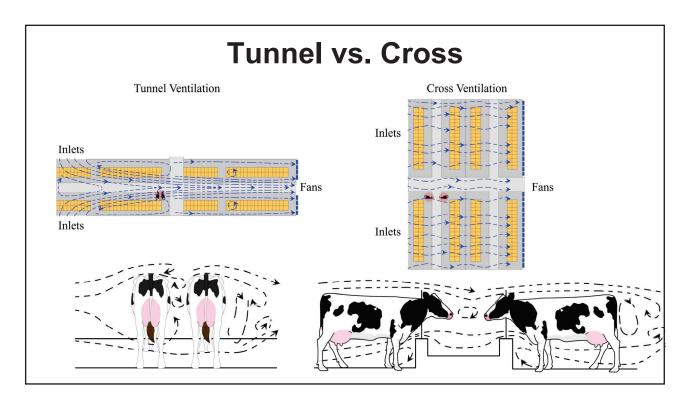





Herd Level Signs of Poor Ventilation & Heat Stress

- Milk yield crash in the summer
- · Fertility crash in the summer
- · Elevated SCC in the summer
- Elevated rates of health events variable timing:
 - Mastitis in the summer
 - Lameness in the fall
 - Pneumonia <u>in the winter</u> (problem of definition!)

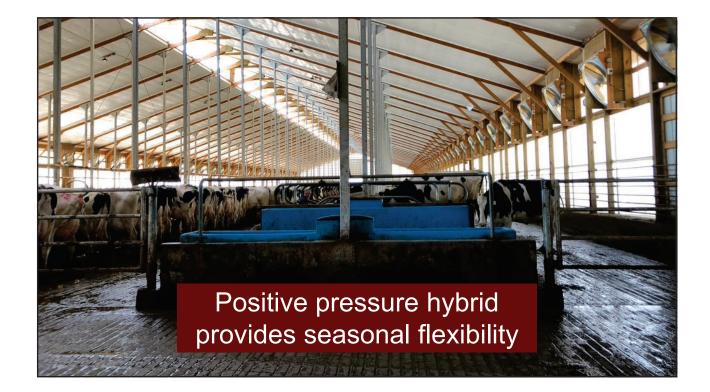


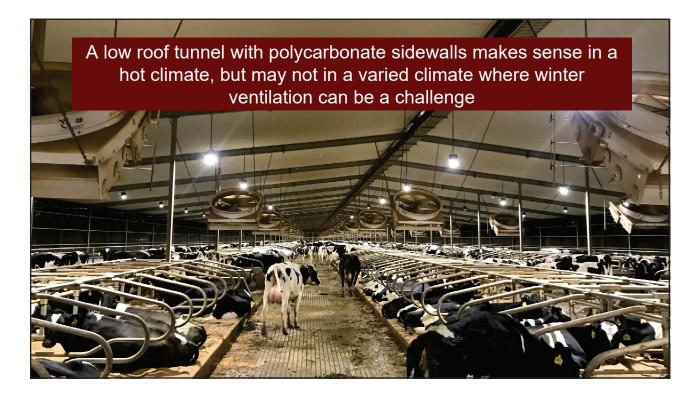

Ventilation = the provision of *fresh air* to a building space

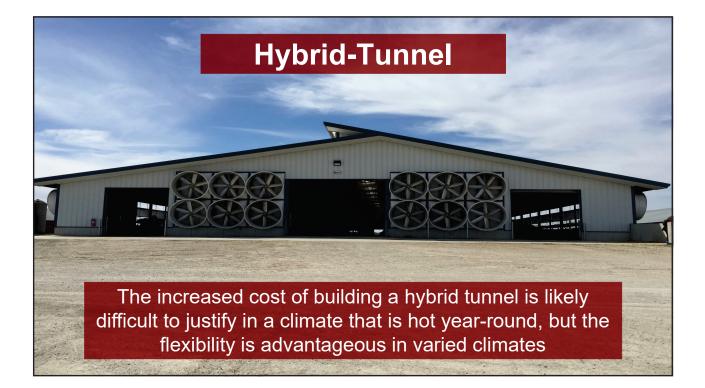
The fresh air displaces heat, moisture, noxious gases and airborne pathogens

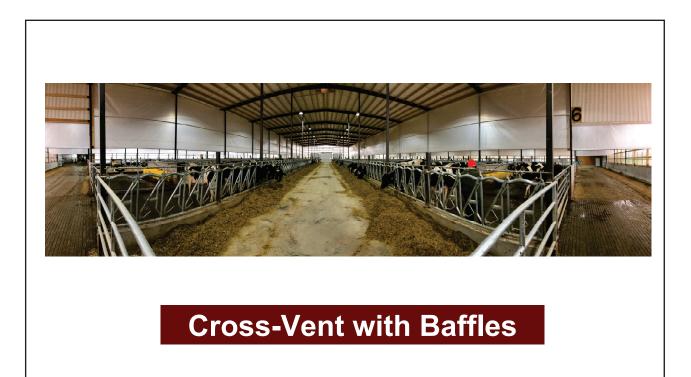
6 Common Ventilation Choices:

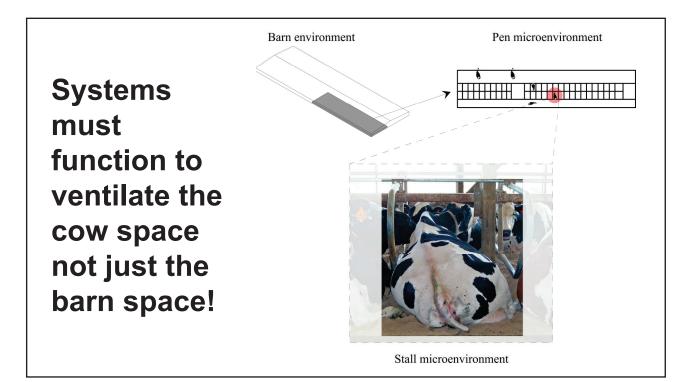
- 1. Natural ventilation with fans over the stalls
- 2. Positive pressure hybrid ventilation with fans pushing air into the barn
- 3. Tunnel ventilation with fans over the stalls
- 4. Tunnel hybrid ventilation with cupola fans and curtains
- 5. Cross ventilation with baffles over the stalls
- 6. Cross ventilation with fans over the stalls




- All 6 options can be designed and installed to operate effectively
- They can also easily be designed and installed incorrectly to fail!
- Some are better choices than others under different climatic, social, and economic circumstances
- Where electricity is expensive (2-4x US), the cost of heat stress must be high or the barn very large to justify mechanical ventilation options


Туре	Climate Choice	Preferred Stall Layout Option	Relative Electrical Cost	Requirement for Fan Maintenance	Outdoor Access	Other Factors
Natural Ventilation	variable	\leq 6 rows	low	low	yes	Location topography
Positive Pressure Hybrid	variable	4 rows	low	high	yes	High install cost, restricted design
Tunnel	hot	≦ 8 rows	high	high	no	Barn length restrictions, winter air movement
Tunnel Hybrid	variable	≦ 8 rows	high	high	yes	Barn length restrictions, most adaptable to range of climates
Cross Baffle	variable	8-10 rows	low	low	no	Need retractable baffles
Cross Fan	variable	> 10 rows	high	high	no	Preferred for wider body cross vents

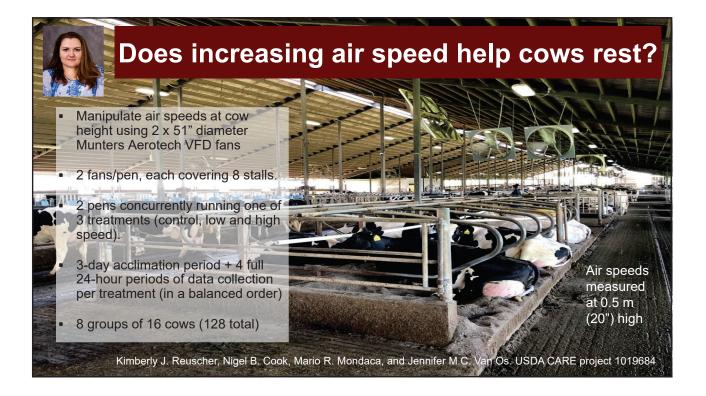




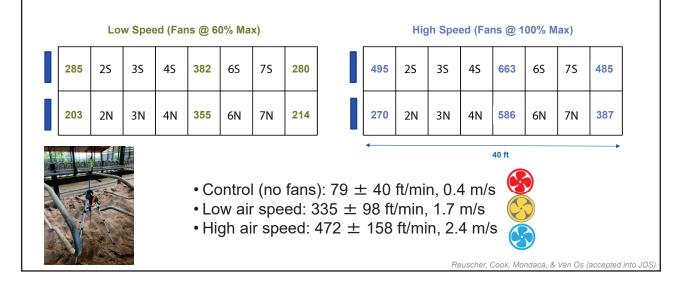
Criteria for Effective Ventilation Design

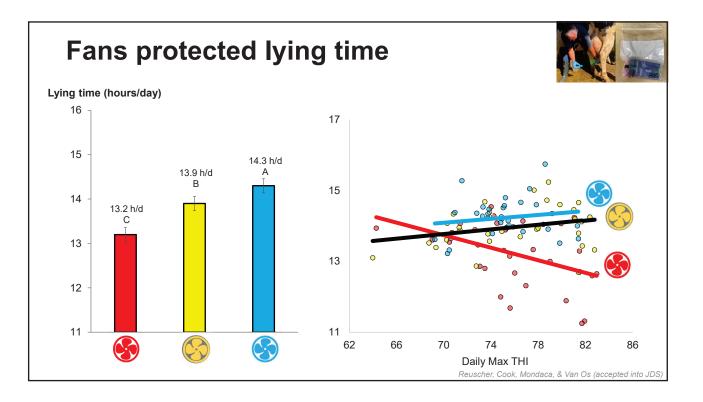
- 1. Sufficient air exchange to remove heat, dust, noxious gases, and moisture from the barn
- 2. Target air speed in the resting microenvironment
- 3. System should work as well across all seasons
- 4. It must be economical!

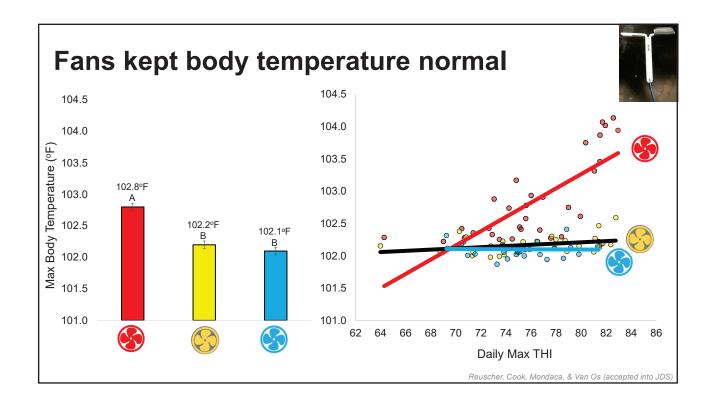
- 1. Sufficient air exchange to remove heat, dust, noxious gases, and moisture from the barn
- 2. Target air speed in the resting microenvironment
- 3. System should work as well across all seasons
- 4. It must be economical!

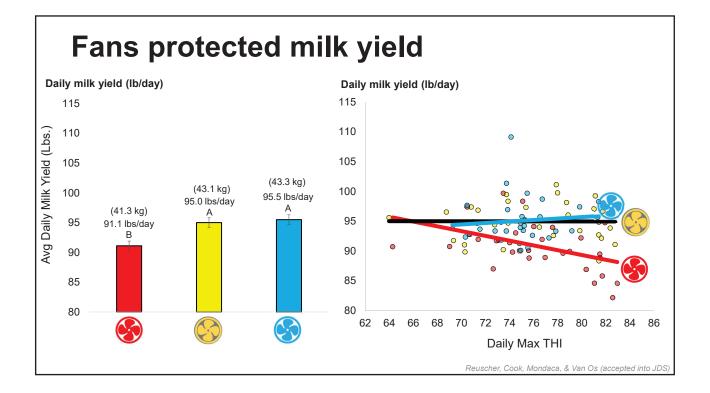


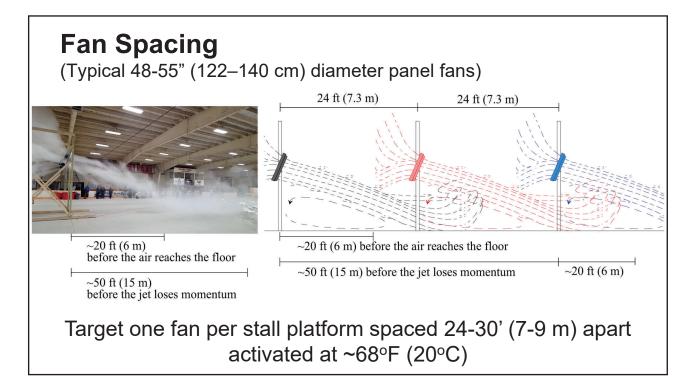
Practical Design Recommendations Sufficient air change per hour (ACH) - 4-8 ACH winter

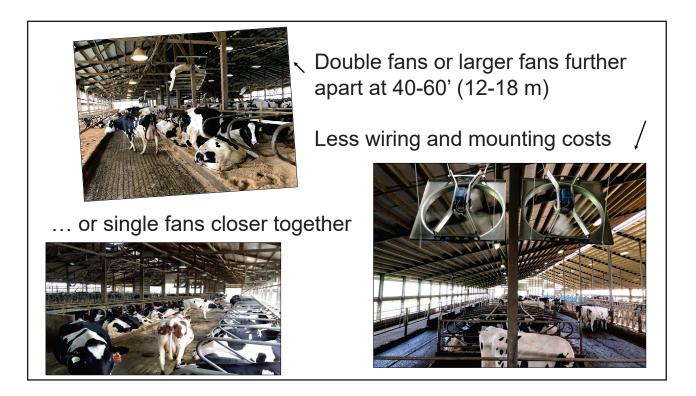

- 40-60 ACH summer (~40 ACH for tunnels, ~50 ACH cross vents)
- Sufficient air exchange per unit body weight for summer
 - ~1,500 CFM (~2,550 m³/h) per adult cow
 - Higher air exchange rates maybe required in hotter, more humid environments than continental US


- 1. Sufficient air exchange to remove heat, dust, noxious gases, and moisture from the barn
- 2. Target air speed in the resting microenvironment
- 3. System should work as well across all seasons
- 4. It must be economical!

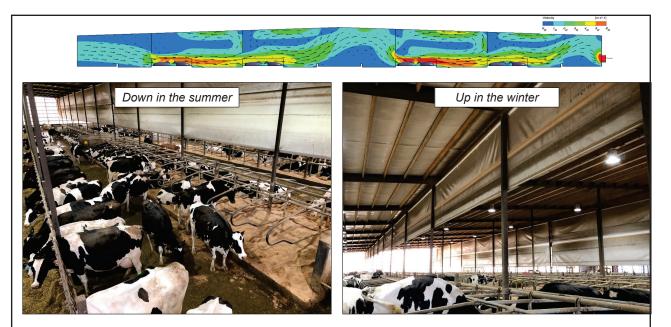








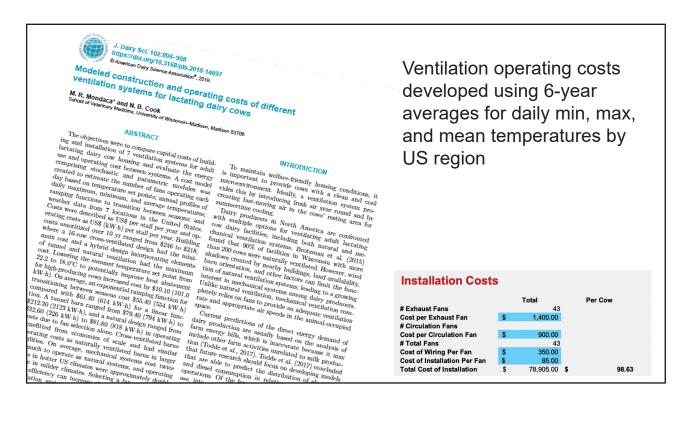
Conclusions

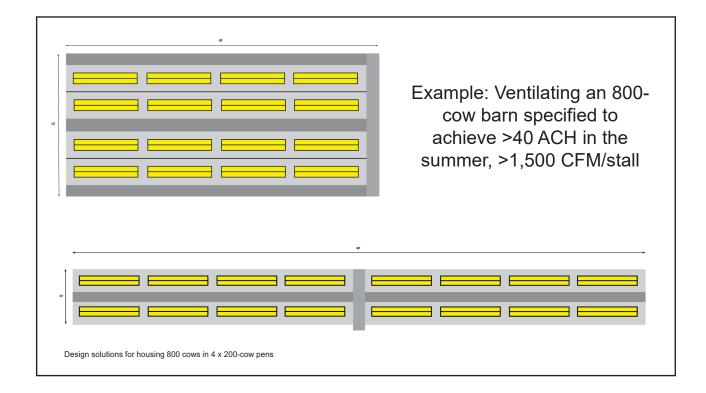

- Air speed at cow resting height influenced daily lying time, vaginal temperature, and milk yield under conditions of heat stress
- Positive impacts were identified at a mean air speed of ~340 ft/min (4 mph, 1.7 m/s), with some smaller additional benefit when air speed was increased to a mean of ~475 ft/min (5.4 mph, 2.4 m/s). This is likely more important at higher ambient THI
- These results indicate the need to provide a Minimum Cooling Air Speed (MCAS) in the cow resting microenvironment
 - Defined as a minimum of ~200 ft/min or 2.25 mph or 1 m/s measured at resting height (18" or 0.5 m).
 - Current research suggests diminishing benefits at ~400-500 ft/min or ~5 mph or 2-2.5 m/s
- Increasing fan speed from 60% to 100% more than doubled the electricity cost!

- 1. Sufficient air exchange to remove heat, dust, noxious gases, and moisture from the barn
- 2. Target air speed in the resting microenvironment
- 3. System should work as well across all seasons
- 4. It must be economical!

Baffles create the required airspeed in the resting area in the summer, but need to be retractable in the winter in a cross vent barn to prevent condensation near roof

- 1. Sufficient air exchange to remove heat, dust, noxious gases, and moisture from the barn
- 2. Target air speed in the resting microenvironment
- 3. System should work as well across all seasons
- 4. It must be economical!




				••••			••••	ress Losses
State	DMI Reduction (kg/cow per yr)	Milk production loss	Increase in average	Annual	Deaths to heat stress	Heat stress		J. Datry Sci. 66./E. Suppl.):E52-E77 © American Datry Science Association, 2000. Economic Losses from Heat Stress by US Livestock Industries ¹ N. R. St.Pierre [*] , B. Cobagor [*] , and G. Schulter N. R. St.Pierre [*] , B. Cobagor [*] , and G. Schulter Too (vas case) Useriari, Case Cobagor [*] , Case Cobagor [*] , and G. Schulter Date Coba
AL	648	1305	40.5	48.8	10.4	2679	19,233	3. Datry Sci. 66/E: Suppl: Particulation, 2003. • American Dairy Science Association, 2003. • Losses from Heat Stress by US Livestock Industries • Losses
AR	611 362	1233 729	37.0 25.6	44.5 24.7	9.5 5.2	2418 1889	17,552	 Example an Daily Concerning Con
CA	145	293	12.1	9.1	1.9	1039	5587	The Onio State utural and Comutania and Comuta
CO	88 78	176 157	8.3 8.1	6.0 5.8	1.2	739 785	3777 3670	1Department University or University or University or University
DE	229	461	8.1 18.7	5.8	1.2 3.5	1527	3670 8802	
FL	894	1803	59.2	79.9	17.2	4261	28,152	a white accounted for a counted for a counted for a counted to counted to a counted to counted to a counted t
GA IA	600 242	1209 487	38.9 17.6	45.6 15.6	9.7 3.2	2765 1271	18,448 8238	ABSTRACT Nebraska, and North Carolina accounted for \$725 and Ion of namual losses, or 43% of total rational loss ABSTRACT Is livestock in . Results point to a need for more energy and expiri- ate US livestock in . Results point to a mean systema.
ID	51	102	8.8	3.9	0.8	581	2558	
IL.	291	586	20.8	19.4	4.1	1498	9793	Det TRACT him point to a new systems.
IN KS	214 334	430 672	17.0 23.5	14.6 22.8	3.0 4.8	1333 1731	7951 11.082	
KY	400	807	27.1	27.7	5.8	1811	12,810	ABSTRACT Economic losses are incurred by the US livestock in Economic losses are incurred by the US livestock in Strain by entained a strained systems. Incurred the strained systems, humidity in distribution best attends, tengentures humidity in Strained by the strained systems have attend to be distribution of the strain common bases Merevisited Strained and the strained systems have attend to be therein the strained systems have attend to be herein the strained systems have atten
LA MA	1028	2072 200	57.7 9.4	88.2 7.1	19.3 1.5	3551 865	27,355 4310	hocause has a tive temper tort The ob- livestock point DMILess 1000 biru
MD	212	428	9.4 17.5	7.1 15.4	3.2	865 1458	4310 8212	dustries where encours to connomic losses Abbreviation Rey. In average num
ME	42	84	4.7	3.0	0.6	455	2007	
MI MN	80 116	160 234	7.8 10.0	5.5 7.5	1.1	708 816	3495 4566	intive of the sing US liveau a wore than any the from heat are second system.
MN MO	464	234 936	10.0 29.0	7.5	1.5	816 1875	4566 13.734	
MS	808	1629	47.0	63.2	13.6	2993	22,293	stross, Alina ter and I to have apparent in and Drotate in loss in body
MT NC	49	98 679	5.4 24.5	3.6 23.5	0.7	527 1840	2370 11.565	dairy hennis market hogs, protect 1) decreased = the second and the second box per day), Gaintsee 1000 birds per to
NC ND	337 104	679 210	24.5 8.9	23.5 6.5	4.9 1.3	1840 725	11,565 4047	cattle, so as considered with milk, eggs), 2) uSDA and their per animal per a
NE	352	710	21.9	21.4	4.5	1376	10,300	Economic feed intake, growed reproduction, eventories of each relative humidity (90) stress, PR = monthly repr
NH	161	325	12.1	9.6	2.0	870	5582	manue and 3) decide for monthly inventes tates. Daily death rate from new change in inducerature
NJ NM	127	256 338	11.7 23.0	9.2 22.2	1.9 4.6	1073 1756	5425 11.205	industry data and of the course intions over a the Tale, the table is the Thilese and
NV	82	166	8.9	6.4	1.3	860	4029	minul Class - 957 Weather - and mean mean fur cilli fare humidary - of Hidrophan
NY OH	69 159	139 320	7.3	5.1 11.0	1.0	715	3280 6390	mather data and used to have feither at a stand one curve will and
OH OK	159 737	320 1486	13.7 40.8	11.0 51.9	2.3 11.1	1146 2434	6390 19.349	168 to 125 y THIL TIME the only THIL TIME
OR	86	173	7.6	5.3	1.1	639	3429	
PA	159	321	13.2	10.6	2.2	1061	6140	state Animal responses of maximum material and the short above when
RI	71 484	143 975	7.8 33.2	5.6 37.3	1.2 7.9	789 2547	3504 15,768	tate using a taily duration tailor were with animat character
SD	251	506	16.7	14.7	3.1	1109	7827	
TN	378 996	761 2007	26.8 53.9	26.8 73.7	5.6	1902 3185	12,684 25,597	heat is 1000 times the for each state mum moder
TX UT	996 67	2007 135	53.9 7.7	73.7 5.4	15.9 1.1	3185 780	25,597 3452	summary onch animal characteristic costs in the productivity might
VA	311	627	22.3	20.8	4.3	1584	10,502	year, intensities of needed) Capital and open intensity are detrimental (Engular, 1981; and
VT WA	61	123	6.7	4.6	0.9	652 566	2956	of bigh, and intensive.) the advantage intensity, total mal agriculture of a the part
WA	82 91	166 183	7.0	4.9 6.3	1.0	566 776	3127 3935	ace, naccounted for event (minimum 139 4 billion annu-
WV	216	436	17.4	14.8	3.1	1357	8149	
WY U.S. Weighted Av	34	68	4.3	2.7	0.5	448 1218	1811 7463	Wintow arrees animal classification internasi

In Madison, WI there are 77 days >T 68°F (20°C) and the calculated marginal cost of heat stress is \$123/cow/year

Barn Location									
US ZIP Code	State	Location	Lat	Long		Temperature Threshold (%)		Milk Price \$/cwt	
53706	w	Madison	43.1	-89.4		68	\$		18.0
53706	VVI	Madisoff	43.1	-03.4		Ib DWIb Marginal Milk		TMR Price \$/Ib	
						0.44	\$		0.1
Exhaust Stage	Set-Point (°F)	Stage Days per Year	Cumulative Exhaus	at System Cost per Hour		Exhaust System Stage Operating Cost			
Winter	<32	94	s	0.73			1,656		
	<39	49	\$	1.75			2,054		
	<46	32	s	2.84			2,159		
	<53	36	s	3.82			3,307		
	<68	78	\$	4.92			9,178		
Summer	>=68	77	5	6.12	\$		11,232		
	Days:	365							
Annual Operating	Cost			Marginal Mil	k Co	ost of Heat Stress			
	Total	Annual Operating Cost Per Co	w Milk loss (lb) per com	w Milk loss (Ib) per cow per year	ı	Loss (\$) per year Loss (\$) per cow	per year		
Exhaust System Cost	\$ 20	585 \$ 36.5							
Circulation Fan Cost		962 \$ 18.							
		.547 \$ 55.0			\$	98,883 \$	123.60		

Assuming that the loss per cow is an underestimate of the true cost of heat stress and poor ventilation, if the operating costs per cow per year are less than ~\$120 for this location, then we consider the system economically viable

How much does it all cost?

									Jacksonville FL	
System Type	# Recirculation Fans	# Exhaust Fans	# Cupola Fans	# HVLS Fans	Total # Fans	Estimated Fan Installation Cost (\$/cow)	Operating C (\$/cow/yr			perating Cost /cow/yr)
Natural Ventilation	68				68	\$104.98	\$ 23.10)	\$	69.30
Positive Pressure Hybrid	192			11	203	\$275.13	\$ 22.05	5	\$	57.88
Tunnel	68	53			121	\$226.54	\$ 52.70)	\$	112.23
Tunnel Hybrid	68	56	15		139	\$249.11	\$ 55.68	3	\$	116.11
Cross-Vent Baffle		61			61	\$139.92	\$ 40.50)	\$	66.10
Cross-Vent Fan	68	56			124	\$233.43	\$ 59.86	3	\$	129.30

800-cow barn in 3 locations with electricity at \$0.10/kWh

Installation Costs							
Туре	Cost per Fan						
Circulation Fan 55"	\$800.00						
Positive pressure or cupola fan 36"	\$400.00						
Exhaust Fan 55"	\$1,400.00						
HVLS Fan	\$5,000.00						
Installation Cost	\$85.00						
Wiring Costs	\$350.00						

*Estimate HVLS fans cost \$1.50 per day to operate for 200 days per year

Fan Choice Example – One Manufacturer

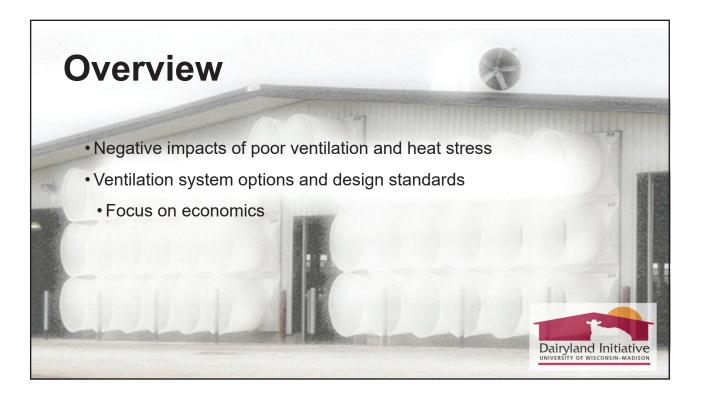
Tunnel ventilation for 1,560 cows at 40 ACH with fans over stalls in Madison, WI. Cost of heat stress \$123/cow/year.

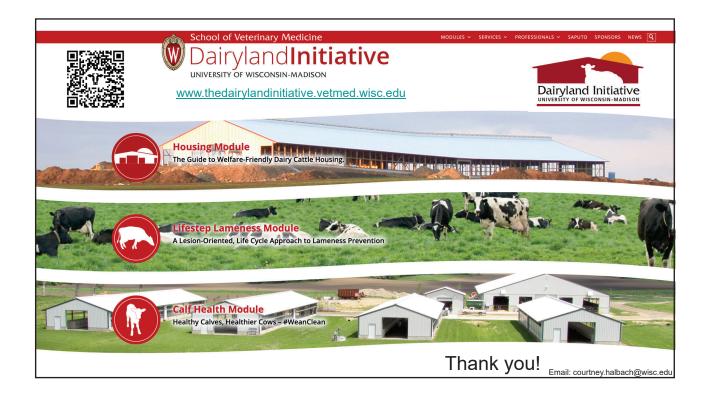
Fan Choice	CFM	CFM/Watt	# Exhaust Fans	Install Cost/Cow	Operating Cost/Cow
55-inch (140 cm)	22,722	20.80	87	\$227.21	\$48.43
60-inch (152 cm)	26,800	17.20	74	\$211.92	\$54.71
60-inch	30,300	16.40	66	\$202.51	\$56.58
60-inch	36,900	13.10	54	\$200.39	\$66.00
72-inch (183 cm)	41,527	21.60	48	\$199.79	\$47.74

Note: Fan choice is not solely determined by CFM/Watt (e.g., air flow ratio, mounting requirements, noise level etc.)

Electricity Cost - Variable Frequency Drives

# of Fans	Model	Speed Setting	KW/Fan	Total KW	Cost/HR	Hours Runtime	Est. Cost/YR
1	AX51DG43-HR	100%	1.337	1.337	\$0.15	4380	\$644.17
1	AX51DG43-HR	60%	0.665	0.665	\$0.07	4380	\$320.40
						DIFFERENCE	\$323.77
					Power Cost	0.110	PER KWh
	Data from 🚫 Munte						Inters


Poor Maintenance Consequences


Buildup on louvers can reduce fan efficiency by 24% (Simmons and Lott, 1997)

Other publications site maintenance reducing efficiency between 20-50%

Every fan installed must be cleaned and maintained!

